CESDb > Structural Analysis > BEAMCOL9
BEAMCOL9 screenshot
SOFTWARE :BEAMCOL9
DEVELOPER :Alex Tomanovich
VERSION :3.5
PLATFORM :Spreadsheet
FILE SIZE :0.25 MB
LICENSE :Freeware
DOWNLOADS :UserDownloads:9237
Legacy Software Notice:
Please be advised that BEAMCOL9 is considered outdated or legacy, and it has reached the end of its support and update cycle. As a result, compatibility issues may arise, and its functionality cannot be guaranteed on modern computer systems.
Program Description

BEAMCOL9" is a spreadsheet program written in MS-Excel for the purpose of analysis and code checking of steel beams and columns. Specifically, beams and columns are analyzed / code checked per the AISC 9th Edition Allowable Stress Design (ASD) Manual. Both actual and allowable stresses are computed, with the final result being a computed "stress ratio" of actual stress/allowable stress. Also, a list of the lightest weight members which satisfy the code check is displayed for convenience.

This program is a workbook consisting of six (6) worksheets, described as follows:

  • BeamCol(I) - Analysis / Code Check for W, S, M, and HP Shapes
  • BeamCol(Built-Up) - Analysis / Code Check for Non-Database and Built-Up Shapes
  • BeamCol(C) - Analysis / Code Check for Channel Shapes
  • BeamCol(Tube) - Analysis / Code Check for Rectangular HSS (Tube) Shapes
  • BeamCol(Pipe) - Analysis / Code Check for Round HSS and Pipe Shapes

All the worksheets are independent and self contained, so that you can move them from one workbook to another. All the worksheets are protected, but not with a password.

Program Assumptions and Limitations:

1. This program follows the procedures and guidelines of the AISC 9th Edition Allowable Stress (ASD) Manual (1989).

2. This program uses the database of member dimensions and section properties from the "AISC Shapes Database", Version 3.0 (2001) as well as the AISC 9th Edition (ASD) Manual (1989).

3. The "BeamCol(Built-Up)" worksheet is valid for AISC W, S, M, and HP shapes NOT contained in the AISC 9th Edition Manual, as well as for non-hybird and doubly-symmetrical ("I" shaped) built-up members which have their flanges continuously welded to the web and which DO NOT quailify as plate girders.(Note: the AISC Code limiting value on the web for built-up beams not to qualify as plate girders is as follows:

(d-2*tf)/tw <= 760/SQRT(0.60*Fy)

4. This program is NOT valid for tees (WT shapes) and angles.

5. In this program for members subjected to known loadings consisting of axial load (compression or tension) and/or uniaxial or biaxial bending, both the actual and allowable stress are computed, with the final result being a computed "stress ratio" of actual stress/allowable stress.

6. The "BeamCol(Built-Up)" worksheet will require the input for the total depth, web thickness, flange width, and flange thickness. Then, all the remaining section properties are automatically calculated, assuming straight, non-sloping flanges.

7. This program utilizes an "Allowable Stress Increase Factor" (ASIF) which is a multiplier of any of the calculated allowable stresses Fa, Fbx, and Fby and also the Euler column buckling stresses F'ex and F'ey. It is used and appears ONLY in the stress ratio calculation. Typically a value of 1.0 may be used. However, a value of 1.333 may be used for load combinations which include wind or seismic loads.

8. If an axially loaded compression member has a value of the maximum slenderness ratio K*L*12/r >200, then a message will appear. However, this program DOES NOT consider or deem a particular member as "inadequate" based on the slenderness ratio of 200 being exceeded.

9. For the case of combined axial compression with bending, if the calculated value of fa >=F'e (which is not allowed) then a warning (error!) message will appear.

10. When the values of either 'Lx', 'Ly', or 'Lb' are input = 0' (or actually <= 1.0'), this program will use a value = 1.0'.

11. When a stiffened element (web) of a member subjected to axial compression is classified as a "slender" element (exceeding non-compact limits) based on local buckling criteria, then the program complies with AISC Appendix B.

12. In the "BeamCol(C)" worksheet for channels subjected to Y-axis bending, the properties database uses the minimum value of 'Sy'. However, it is desired to calculate the bending stress at the back of the channel instead of at the tips of the flanges, this may be done by computing a "reduced effective" Y-axis bending moment, Mye = My*Sy*(xbar)/Iy , for member loading input.

13. The values of 'Cb', 'Cmx', 'Cmy', 'Kx, and 'Ky' may be calculated (if applicable) by accessing the additional input data to the right of the main page in each of the calculation worksheets. Then, these calculated values can be input under the member design parameters on the main page. (Note: there are equations which very closely approximate the solutions for 'Kx' and 'Ky' obtained using the AISC Code Alignment Charts.)

14. This program does not calculate or check shear or deflection in member

15. This program does not consider torsion on member.

16. This program does not consider deduction for holes in members subjected to tension.

* BEAMCOL9 download link provides freeware version of the software.

Similar Software
BMREINF9 Version:2.0 · Alex Tomanovich
BMREINF9

Analysis Of Beam Reinforcement per Aisc 9th Edition ASD Manual

BMREINF9 is a spreadsheet program written in MS-Excel for the purpose of analysis and code checking of steel members with various types of reinforcement configurations.

BASEPLT9 Version:3.7 · Alex Tomanovich
BASEPLT9

Steel Column Base Plate Analysis per AISC 9th Ed

BASEPLT9 is a spreadsheet program written in MS-Excel for the purpose of analysis of steel column base plates.

WELDGRP Version:2.3 · Alex Tomanovich
WELDGRP

Weld Group Analysis per AISC 9th Ed.

WELDGRP is a spreadsheet program written in MS-Excel for the purpose of analysis of weld groups using either the ultimate strength method or the elastic method.

STEPCOL Version:1.1 · Alex Tomanovich
STEPCOL

Stepped Column Analysis for Determining Effective Lengths

Stepped column analysis for determining effective lengths and effective length K factors.

BOEF Version:1.6 · Alex Tomanovich
BOEF

Beam on Elastic Foundation Analysis

BOEF is a spreadsheet program written in MS-Excel for the purpose of analysis a finite length beam with free ends supported continuously on an elastic foundation.

Comments & Reviews

No comments yet. Be the first to comment.

Submit a review about BEAMCOL9 software with your social media profile

avatar
Rate This Software

BEAMCOL9 has been rated 5.0 out of 5 points. A total of 7 votes cast and no one has reviewed the software yet.

Popular Programs

47746 hitsLTBeam 1.0.11

LTBeam is a software which deals with the elastic Lateral Torsional Buckling of Beams under bending action about their major axis.

26016 hitsFTOOL 4.0

Ftool provides a simple analysis program that merges, in the same interface, resources for effective creation and manipulation of the model, linked to a fast and effective code for visualization of the results.

18990 hitsBASEPLT9 3.7

BASEPLT9 is a spreadsheet program written in MS-Excel for the purpose of analysis of steel column base plates.

18325 hitsEBPlate 2.01

EBPlate is a piece of software developed by CTICM with a partial funding of the European Research Fund for Coal and Steel (RFCS). It assesses the critical stresses associated to the elastic buckling of plates loaded in their plan.

New & Updated

19 NovBeam Column Imperfection 2023

Application allows to determine the movements, efforts and resistant capacity of the compressed parts, leaned according to strong axis, weak and torsion with double section, capable of buckling laterally.

7 MarThinWallRes N My Mz 2023

ThinWallRes N My Mz allows to determine the resistant capacity of open and closed thin-walled sections subjected to axial and biaxial bending.

24 FebThinWallRes N My Mz B 2023

ThinWallRes N My Mz B allows determining the resistant capacity of open thin-walled sections subjected to axial, biaxial and bi-moment bending.

22 FebArch3D 2023

Arch3D makes it possible to determine the resistant capacity of compressed and flexed arches with a double tee section, susceptible to lateral buckling.